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Abstract. Using low field electrical transport simulations, we show that the particular mobility
behaviour versus carrier density in MOVPE GaN materials, characterized by a mobility collapse
at low dopant densities, cannot be simply interpreted in terms of dislocation scattering or trapping
mechanisms, but that it is also controlled by the collective effect of dislocation walls (the columnar
structure). As the free carrier density increases, the more efficient screening properties result in the
transition between a barrier-controlled mobility regime and a pure-diffusion-process-controlled
mobility regime. The model permits us to quantitatively reproduce the experimental mobility
collapse.

1. Introduction

The free carrier mobility versus carrier density in n-type GaN grown by low-pressure
metallorganic vapour phase epitaxy (LP-MOVPE) on sapphire substrates has often been found
extremely low at low n-type doping level while it reaches standard values for larger doping.
This behaviour is singular when compared to the classical behaviour that shows that the carrier
mobility is mainly controlled by ionized impurity scattering and as a consequence the lower
the doping level the larger the carrier mobility [1–4]. In our experiments, the mobility versus
carrier density presents an even clearer trend as it displays a sharp transition which separates
a low mobility regime, as long as the carrier density is lower than a critical value, from a large
mobility regime (the so-called mobility collapse in [5] and [6]). This behaviour has been met
for several series of samples grown by LP-MOVPE using the two step procedure described
in [7]. Figure 1 shows an example of two sets of experimental points corresponding to two
families of layers grown with two different growth processes: the transitions occur at about
8 × 1017 cm−3 and 2 × 1017 cm−3 respectively for series α and series �. For each series,
the only variable parameter is the concentration of the Si dopant (diluted silane). Samples
belonging to a given series are then expected to possess quite identical defect substructures
and should mainly differ from their doping densities. Our experimental procedure allows us to
eliminate the result dispersion in results found in literature. TEM observations [5, 8] indicate
that any of our samples is, as usual, characterized by a columnar cell structure constituted by
threading dislocations more or less arranged in walls (rough sub-grain boundaries). A rough
estimate of the dislocation density is about 2 × 1010 and 5 × 109 cm−3 for respectively series
α and series �.

Classical transport approaches [5, 6, 9–13] remain quite unable to describe the sharp
collapse of the mobility versus the free carrier density for a given temperature. In [5] and [6],
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Figure 1. Evolution of the 300 K Hall carrier mobility as a function of the Hall carrier density for
two sets of GaN layers: series α (black circles) and series � (white circles), each grown with a
specific growth process [8].

we have already reported that this behaviour cannot be described by assuming that dislocations
only act as scattering centres. In the present article, we qualitatively and quantitatively show
that it results from the presence of dislocation walls (i.e. the dislocation substructure) which
act as electronic barriers as long as the screening properties of the material remain quite unable
to separate the energy band bending arising from neighbouring dislocations of a given wall.

2. Transport analysis in terms of diffusion process

2.1. The theoretical framework of the present simulation

In the particular case of GaN which contains a very large dislocation density and which is
also characterized by a very large energy of the optical phonons (91 meV), we expect that the
carrier mobility will strongly depend on (i) the concentration of dislocations, which are the
typical examples of anisotropic scattering centres, as well as on (ii) optical phonon scattering
mechanisms, which are the prototype of inelastic scattering mechanisms. Thus, we have
grounded the present simulation in the frame of the so-called dynamical transport theory. This
recent approach allows us to deal, in a consistent manner, with anisotropic [14] as well as with
inelastic [15] scattering mechanisms contrarily to the classical relaxation time approximation
(although it is generally used in the referred literature), which cannot be extended, in principle,
to such scattering mechanisms [16].

2.2. Dislocation states

Ab initio calculations unambiguously indicate that, for GaN [17], the dislocation core structures
are arranged in such a way that only shallow one-dimensional densities of states are present
below the conduction band or above the valence bands. A precise numerical calculation
of such shallow states was undertaken in [18], in the framework of the envelope function
approximation, by assuming that they originate from long range binding potentials connected
with the dislocation strain field through the deformation potential and piezoelectric potential
coupling. In this approach, the ‘a-edge’ threading dislocations in GaN (those which are mainly
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involved in the formation of sub-grain boundaries of the columnar cell structure) should bind
shallow electronic states lying at about 100 meV under the conduction band. Nevertheless,
because of their Cottrell atmosphere (made up of segregated impurities or point defects),
as-grown dislocations may also bind localized states through extrinsic mechanisms rather
than because of the intrinsic properties recalled above. Thus, the existence and location of
dislocation energy states remain open questions and we consider, in the following, such states
and their location Edislo under the conduction band as being a free parameter for fitting our
mobility measurements.

Dislocation states are closely spaced all along the dislocation line. Thus, it is clear that
carriers trapped on such states interact electrostatically, increasing therefore the free energy of
the whole system. This results in a self-regulation of the dislocation state statistics which has
been described in various models, for instance the depleted region around the dislocation line
[19] (similarly to what is done for the study of Schottky diodes), or again the Debye–Hückel
screening [20]. Such dislocation statistics have also been included in our simulation.

2.3. Dislocation scattering mechanisms

Concerning dislocations, the study of their role on the mobility of GaN is surprisingly restricted
in the referred literature [9, 10, 12, 13] to the so-called ‘core effect’ scattering mechanisms
(issuing from the linear charge trapped at the dislocation line) though it has been known for
a long time that the dislocation strain field also prompts other scattering mechanisms through
the deformation potential and the piezoelectric coupling [21]. Such dislocation scattering
mechanisms have been included in the present simulation. In the particular case of GaN, the
piezoelectric tensor is such that dislocations parallel to the c axis (in practice the threading
dislocations) do not couple into any piezoelectric potential [22]. However, we nonetheless
introduced in our simulation the possibility that a given fraction of dislocations could have
‘non-vertical’ orientations (with the c axis being the ‘vertical’) and induce some piezoelectric
scattering potentials

2.4. Theoretical results in terms of pure diffusion mechanism

Simulation of the mobility in terms of pure diffusion processes have been undertaken,
including all the contributions recalled in the above sub-sections and considering as other
scattering mechanisms the ionized impurities, acoustical and optical phonons and carrier–
carrier scattering. The physical parameters used are the standard values found in literature.
Figure 2 shows a typical determination of the mobility versus carrier density, at room
temperature, for various dislocation densities and a compensation ratio arbitrarily chosen
equal to 0.3. It more particularly shows that dislocations mainly act as efficient scattering
centres at low carrier density while their scattering effect is less and less preeminent in the
heavily doped range. In any case, it is impossible to obtain mobilities as low as those measured
experimentally in the low mobility range without introducing unrealistic dislocation densities.
Whatever the density of dislocations and the position of their bound states, we are unable to
reproduce the singular behaviour shown in figure 1.

3. A dislocation barrier model

The idea of a barrier controlled mobility has already been suggested for polycrystalline silicon
films [23], further extended to GaN in [24] and used in [25] to explain the thermally activated
conductivity in undoped GaN layers. However, this kind of model is unable to explain the
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Figure 2. Mobility versus carrier density at 300 K for various dislocation densities. In all the cases,
the compensation ratio C = NA/ND is 0.3.

sharp mobility transition or again the existence of a critical carrier density at which it occurs.
In our former approach in [6], the internal barriers associated with the walls of dislocations
were supposed to have fixed height and were overcome by the carriers, because of a subsequent
motion of the Fermi level when increasing the dopant density. Typically, such a model leads
to a fixed critical density at which the sharp mobility transition occurs and which roughly
corresponds to the transition between the non-degenerate and the degenerate electron gas
behaviour, when increasing the dopant density (i.e. at a value lying near the intrinsic conduction
band density of states at about ∼2 × 1018 cm−3). Thus, it was impossible to explain why this
critical carrier density value would depend on the defect substructure and could be as low as
2 × 1017 cm−3 as obtained in the second series of GaN layers (series �) presented in figure 1.

In the present model, we suppose that dislocations are responsible for localized energy
states closely spaced all along their line. Because of a large density of states, such levels are
attracted, at equilibrium, by the Fermi level and, in the rigid shift approximation, a resulting
band bending occurs around the dislocation line, in a similar way to what happens in the
depleted region of a Schottky diode. Figures 3(a) and (b) illustrate such a band bending.

The band bending shape EC(r) may be found by assuming that, within a given radius
R, the area surrounding the dislocation line is depleted. Then, using the boundary conditions
EC(0) = EF − Edislo and EC(R) = 0, Poisson’s equation integration gives

EC(r) = (EF − EC) − KBT

4

r2

λ∗2
for r < R else EC(r) = 0 (3.1)

R = 2λ∗
√

EF − Edislo

KBT
(3.2)

where we have introduced the screening wavelength given by λ∗2 = ε0εLKBT/(N+
D −N−

A )e2.
We consider now a family of neighbouring dislocations belonging to a sub-grain boundary

(one dislocation wall). Such dislocations should result in the existence of an internal electronic
barrier as long as the mean distance d separating two neighbouring dislocations is smaller than
2R (figure 3(d)), otherwise dislocations may be considered as independent scattering centres
(figure 3(c)). Thus, a criterion which separates the barrier-controlled mobility from a pure
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Figure 3. Schematic representation of the dislocation induced band bending of the conduction
band. (a) A neutral dislocation; (b) represents a charged dislocation of which the energy level
is shifted towards the Fermi energy level. (c) Individual dislocations. (d) A barrier induced by
dislocations.

diffusion process is

d < 4λ∗
√

EF − Edislo

KBT
→ barrier controlled mobility. (3.3)

When d < 2R, the energy at the saddle point Espt of the barrier, localized between two
neighbouring dislocations, is given by

Espt (r) = 2

(
(EF − Edislo) − KBT

16

d2

λ∗2

)
(3.4)

while its thickness dspt is approximately given by

dspt = 2

√
R2 − d2

4
. (3.5)

So let us now approximate the barrier saddle point to a square potential barrier of energy height
Espt and thickness dspt . We attribute to this point a tunnel transmission power T (ε) for which
the expression can be found in any textbook. In a barrier-free material, each carrier of energy
ε(k) statistically contributes to the final conductivity through the elemental contribution to the
current density jk = eδfkvk where vk = h̄k/m∗ is the carrier velocity. δfk is the modification
brought to the Fermi–Dirac occupation function of state k by the applied external field Fappl .
As soon as such a carrier meets a potential barrier, it contributes in fact to the whole current
by the effective elemental contribution j ∗

k = T (εk)jk . Thus, the whole current density in the
presence of barriers is given by

j ∗ = 2e
∫

T (εk)δfkvknk d3k (3.6)

where nk is the k density of states.
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4. Donor statistics

Our model strongly depends on the location of the Fermi energy EF , which is determined by
solving the neutrality equation. Thus, it is strongly dependent on the description of the donor
statistics. It is, however, clear that the experimental results shown in figure 1 range from a
region where the material is ‘moderately’ doped towards a region where it is ‘heavily’ doped.
This introduces some particular features in the donor statistics.

(a) The free carrier screening modifies the position of the donor binding energy ED . This
point has been overcome by looking for the minimum versus r of the following equation:

ED = p2

2m∗ − e−r/λDH

4πε0εLr
(4.1)

when the Heisenberg relation pr = h̄ is considered and where λDH is the Debyg–Hückel
screening wavelength. Note that the formula pr = h̄ corresponds in fact to the application
for the ground state of the Heisenberg relation *p*r = h̄. The minimum of (4.1) leads
to the classical hydrogenic model when the wavelength is infinite while it leads to figure 4
in the presence of a free carrier density n. It clearly indicates that the donor binding
energy ED(n) vanishes for n values larger than ∼1.5 × 1018 cm−3 for m∗ = 0.22 m0 and
eL = 8.9. Above these values all the donors must be considered as ionized.

(b) Increasing the donor density also results in the appearance (i) of an impurity band as soon
as the bound state radius r = a∗ (at which (4.1) is minimum) becomes comparable to the
mean spacing d between impurities and (ii) of some conduction band tailing. To include
such effects,

(i) We have phenomenologically introduced the following donor density of states:

ND(E) = ND

1

σ
√
π

e−((E−ED)/σ)2 (4.2)

where ND is the donor density and where σ is a parameter representing typically
the dispersion in the interaction energy between a bound carrier and its neighbours
because of their random distribution. It is clear that for low doping, the mean impurity
spacing is large, leading to negligible interactions and therefore to small sigma values.
In such cases, the Gaussian function acts as a Dirac function of width σ so that

lim
σ→0

ND(E) = NDδ(E − ED). (4.3)

This expression leads to the usual donor statistics.
(ii) We have finally considered that the conduction band edge would spread down to a

value E∗ = EC −δ where, equivalently to the parameter σ , δ is an increasing function
of the donor density. Then, donors whose energy E is larger than E∗ are considered
automatically ionized while other donors with E < E∗ remain localized states that
can only be ionized because of the thermal energy. With the above points, the full
ionized donor density is finally given by

N+
D =

∫ ∞

E∗
ND(E) dE +

∫ E∗

−∞
ND(E)fD(E) dE

= ND

2
erfc

(
E∗ − ED

σ

)
+

ND

σ
√
π

∫ E∗

−∞

e((E−ED)/σ)2

1 + g e(EF −E)/KT
dE (4.4)

where erfc is the complementary error function. An estimate of the dispersion
parameters σ and δ may be chosen under the form

σ ∼= δ = α
e2

4πε0εLd
(4.5)
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Figure 4. Impurity binding energy versus the donor density in the hydrogenic impurity model
calculated with mC∗ = 0.22m0 and εL = 8.9.

where d ≈ (ND)−1/3 represents the mean spacing between impurities. α is a fitting
parameter that depends on the donor spatial distribution, i.e. on the growth process.
For low dopant densities ND , σ and δ are then sufficiently small and the impurity
density of states tends towards the NDδ(E−ED) Dirac function while E∗ → EC : the
usual statistics description. In contrast, for extremely large dopant densities, ED(n)

equals zero and expression (4.5) guarantees that practically all the ND donors are
automatically ionized as expected in the case of heavily doped materials. The above
expressions are only intuitively grounded. They must be considered as a way to get a
continuous description of the donor statistics ranging from moderate to heavy doping.

5. Theoretical results

Using this model, we are able to simulate quantitatively the steep transition of the mobility-
density plot taking realistic parameters. Figure 5 shows two theoretical curves that can fit
the experimental trends presented in figure 1. The values for the high mobility regime have
been intentionally chosen 20% higher in order to account for the fact that the experimental
Hall mobility is slightly lower than the free carrier mobility (see for instance [5]). It appears
clearly that the distance of neighbouring dislocations needs to be increased almost by a factor
of 2 in order to account for a shift of the collapse by a factor of 4 between α and � series:
typically the average equidistance of dislocations in the series α should be chosen equal to
65 nm. The compensation ratio has to be chosen slightly higher for the series α than for the
better quality series � (0.4 and 0.3 respectively). The dislocation densities needed for the fit
have been respectively taken equal to 2 × 1010 and 5 × 109 cm−2 in agreement with the TEM
estimations [5, 8]. The location of the dislocation level under the conduction band turns out to
be a sensible parameter that determines the mobility value and behaviour in the low mobility
range. The better fit of the experimental results shown in figure 1 corresponds to a location at
about 200 meV under the conduction band. Such a value noticeably differs from that (100 meV)
found in [18] using intrinsic arguments. This may be a hint that as-grown dislocation levels do
result from an extrinsic decoration of the dislocation line by some impurities or point defects.
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Figure 5. Modelling of the mobility versus carrier density obtained at 300 K for two different
distances between neighbouring dislocations. Open circles: d = 380 Å and a compensation ratio
equal to 0.4. Full circles: d = 650 Å with a compensation ratio equal to 0.3.

6. Conclusion

Inserting a comprehensive list of scattering mechanisms (ionized impurities, acoustical and
optical phonons, carrier–carrier scattering) and including all the characteristics of dislocation
trapping and scattering mechanisms in our low field transport simulation code, it was impossible
to find any configuration leading to a good description of the experimental behaviour of the
mobility versus the carrier concentration in terms of pure diffusion mechanisms. Instead, we
paid attention to the dislocation substructure mainly built up of dislocation walls (sub-grain
boundaries). Assuming that the dislocation density of states is responsible for some band
bending around the dislocation lines, we could deduce a condition indicating when the carrier
mobility is either controlled by internal electronic barriers (as long as the dielectric response
of the material remains unable to separate the band bending of neighbouring dislocations) or
would simply correspond to some diffusion processes associated with independent dislocations.
Such a simple model fits quite well the mobility behaviour versus carrier density in columnar
cells GaN samples and clearly illustrates the importance of the role of the dislocation spatial
distribution (the defect ‘substructure’), which, to our best knowledge, is generally neglected
in similar dislocation problems. Finally, it allows us to claim that dislocations are, at least in
our samples, responsible for extrinsic linear density of states localized in the mean at about
200 meV under the conduction band.
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